Ocean oxygen minima expansions and their biological impacts
نویسندگان
چکیده
Climate models with biogeochemical components predict declines in oceanic dissolved oxygen with global warming. In coastal regimes oxygen deficits represent acute ecosystem perturbations. Here, we estimate dissolved oxygen differences across the global tropical and subtropical oceans within the oxygen minimum zone (200–700-dbar depth) between 1960–1974 (an early period with reliable data) and 1990–2008 (a recent period capturing ocean response to planetary warming). In most regions of the tropical Pacific, Atlantic, and Indian Oceans the oxygen content in the 200–700-dbar layer has declined. Furthermore, at 200 dbar, the area with O2 o70mmol kg , where some large mobile macro-organisms are unable to abide, has increased by 4.5 million km. The tropical low oxygen zones have expanded horizontally and vertically. Subsurface oxygen has decreased adjacent to most continental shelves. However, oxygen has increased in some regions in the subtropical gyres at the depths analyzed. According to literature discussed below, fishing pressure is strong in the open ocean, which may make it difficult to isolate the impact of declining oxygen on fisheries. At shallower depths we predict habitat compression will occur for hypoxia-intolerant taxa, with eventual loss of biodiversity. Should past trends in observed oxygen differences continue into the future, shifts in animal distributions and changes in ecosystem structure could accelerate. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems
Changes in temperature, oxygen content and other ocean biogeochemical properties directly affect the ecophysiology of marine water-breathing organisms1–3. Previous studies suggest that the most prominent biological responses are changes in distribution4–6, phenology7,8 and productivity9. Both theory and empirical observations also support the hypothesis that warming and reduced oxygen will redu...
متن کاملImpact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis
As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are alread...
متن کاملOcean ventilation and deoxygenation in a warming world: introduction and overview.
Changes of ocean ventilation rates and deoxygenation are two of the less obvious but important indirect impacts expected as a result of climate change on the oceans. They are expected to occur because of (i) the effects of increased stratification on ocean circulation and hence its ventilation, due to reduced upwelling, deep-water formation and turbulent mixing, (ii) reduced oxygenation through...
متن کاملImpacts of ocean acidification on marine fauna and ecosystem processes
Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the seawater chemistry of the world’s oceans with consequences for marine biota. Elevated partial pressure of CO2 (pCO2) is causing the calcium carbonate saturation horizon to shoal in many regions, particularly in high latitudes and regions that intersect with pronounced hypoxic zones. The ability of marine animals, most importan...
متن کاملThe growing human footprint on coastal and open-ocean biogeochemistry.
Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both i...
متن کامل